Radical Cube Zero Weakly Symmetric Algebras and Support Varieties
نویسنده
چکیده
One of our main results is a classification all the weakly symmetric radical cube zero finite dimensional algebras over an algebraically closed field having a theory of support via the Hochschild cohomology ring satisfying Dade’s Lemma. Along the way we give a characterization of when a finite dimensional Koszul algebra has such a theory of support in terms of the graded centre of the Koszul dual.
منابع مشابه
Radical Cube Zero Selfinjective Algebras of Finite Complexity
One of our main results is a classification all the possible quivers of selfinjective radical cube zero finite dimensional algebras over an algebraically closed field having finite complexity. In the paper [5] we classified all weakly symmetric algebras with support varieties via Hochschild cohomology satisfying Dade’s Lemma. For a finite dimensional algebra to have such a theory of support var...
متن کاملProblems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild
We prove that the problems of classifying triples of symmetric or skew-symmetric matrices up to congruence, local commutative associative algebras with zero cube radical and square radical of dimension 3, and Lie algebras with central commutator subalgebra of dimension 3 are hopeless since each of them reduces to the problem of classifying pairs of n-by-n matrices up to simultaneous similarity....
متن کاملEla Problems of Classifying Associative or Lie Algebras over a Field of Characteristic Not Two and Finite Metabelian Groups Are Wild∗
Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central commutator subgroup of order p3 are hopeless since each of them contains • the problem of classi...
متن کاملProblems of classifying associative or Lie algebras over a field of characteristic not two and finite metabelian groups are wild
Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central commutator subgroup of order p3 are hopeless since each of them contains • the problem of classi...
متن کاملOn a functional equation for symmetric linear operators on $C^{*}$ algebras
Let $A$ be a $C^{*}$ algebra, $T: Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $. We prove that under each of the following conditions, $T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: i) $A$ is a simple $C^{*}$-algebra. ii) $A$ is unital with trivial center and has a faithful trace such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010